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The solution of the problem of the motion of a fluid with a free surface 

presents a great difficulty, as is well-known: it is difficult to satisfy 

a boundary condition on a boundary which must be found in the process of 

solution. 

The problem is somewhat simplified in the case of self-modelling 

motions for which the hydrodynamic quantities are functions of the ratio 

x/t, y/t and z/t. The problem of the entry of an infinite wedge into a 

half-space occupied by an incompressible fluid can serve as an example. 

Approximate methods of solution of this problem can be found in 11-51 

and others; the problem of the entry of a wedge has been considered in 

nonlinear formulation in Es-81 . 

The problem of the entry with constant velocity v,, of a wedge of 

arbitrary opening angle 20: into a half-space occupied by an ideal incom- 

pressible and weightless fluid is considered below. This problem of a 

domain.with an unknown section of boundary is reduced to the problem of 

determining a function, analytic in the upper half-plane, in accordance 

with a nonlinear boundary condition prescribed now on a known boundary 

- the entire real axis. 

In view of the complexity of the boundary value problem obtained, 

the auxiliary problem of the propagation of a continuous pressure on 
the free surface of an incompressible fluid is considered. We note that 

the problem of the penetration of the wedge can be considered as a 
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problem of the unsteady motion of a fluid generated by the propagation 

of some continuous pressure along the free surface which bounds the 

fluid. The auxiliary problem under consideration is also reduced to a 

nonlinear boundary value problem, some of whose particular solutions 
can be found by an inverse method. In the present work one exact particu- 
lar solution is found. 

1. The motion of a fluid arising as a result of the penetration of a 

wedge is a potential one. The velocity potential 9(x, y, t) satisfies 
the Laplace equation 

829 / 8x2 + P’p I ay2 = 0 (1.1) 

and the following conditions on the boundary of the domain ARCD (Fig. 1) 

of the disturbed motion of the fluid (the 

boundary of the domain changes with time): 

a) the condition of constant pressure 

on the free surface 

as, / at f (l/z) [(lkp / aq e (ap / ay)21 = 0 .I% 
c 

b) the condition of impenetrability on L 

the solid boundary 
X 

f3cp / an = vO sin a an AB (1.3) 

c) the condition of symmetry n 

*/ax=0 0nAD (1.4) Fig. 1. 

In addition, the condition 

acp I ax = acp/ay = 0 for 15 1 + cc 

and the initial condition ~(2, y, 0) = 0 must be fulfilled. 

Along with condition (1.2) there is a kinematic condition on the free 

surface which expresses the fact that fluid 

on the free surface remain on it during the 

39 vo acp vo 
& 

_---_---0 
ax ax at - 

Here y = f,(x, t) is the equation of the 

fluid. 

particles which are found 

entire time of the motion 

(1.5) 

unknown free boundary of the 

2. Let us introduce the self-modelling variables < = n/vet and q = 

Y/U t e . Then 

cp (x7 Y, t) = vs2t@ (E, ?I 
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where (D(<, ‘I) is a harmonic function of the variables <, rl. The domain 

ABCD is fixed in the plane of <, q (Fig. 2); the equation of the free 
surface has the form q = q(i). 

Conditions (1.2) and (1.5) transform respectively into conditions 

Here <. q are the coordinates of points on the unknown curve q = 11(E). 

Let us introduce the complex potential 

c 
t 

4 

v (5) = Q (E, rl) -1: iy (E, rl), 5=E%N 

The Lagrangean integral of (2.1) can 

then be reduced to the form 
(2.3) 

Re IV (5) - W (511 -It + (5) V’ (5) = 0 

where the complex variable ; is a point 
on the unknown curve rl = q(t). Condi- 

tions (1.3) and (1.4) can be written in 

the L-plane in the form 

FIG. 2. 
Re [e?V (c)] = sin a on AB 

Re V’ (c) = 0 on AD 

(2.4) 

Let us introduce a new unknown function 5 = j(v) which conformally 

maps the upper half-plane of 1~ (Fig. 3) onto the domain ABCD of the <- 

plane. The points A and B on the real axis 

u into which the points A and B of the <- 
plane transform can be given. 

Since the parametric equations of the 

curve q(c) have the form 5 = Re c(u), rl = 

Im 5(a). the derivative q’(c) in condition 

(2.2) is then equal to 

(2.5) 

The complex potential V(c) transforms 
Fig. 3. 

into the function V(~(W)), which we shall 

denote by the same letter V(j(w)) = V(W). In addition 

V’ (6) I C&r(w) = V’ (4 & (2.6) 
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Taking (2.5) and (2.6) into consideration, we shall reduce conditions 

(2.2). (2.3) and (2.4) to the form 

Re i, (uj Im [5’ (4 t (U) - V’ (41 = 0 on BC (- co < u < 0, u = 0) (2.7) 

Re (2.8) 

Re e+ v tu) 5,1(uj - 1 = sin a on BA (0 < u 6 uA, u = 0) (2.9) 

Rev(U)- 0 
5 (4 - 

0nRD (ug<u<+oo, 21~0) (2.10) 

Conditions (2.7) to (2.10) are given on the real axis a. For mapping 

the function c(w) we have, in addition, the conditions that sections RA 

and AD of the u-axis transform into known parts of the boundary of the 

domain ARCD. 

Re [e+ia< (u)] = sin a on BA, Re c (u) = 0 on ALI (2.11) 

The argument of the function c’(w) is known on BA and AD, by virtue 

of which 

I’ (w) = - ieeicr 1 5’ 1 on BA, 

Using (2.12), we shall transform 

form 

Re [iv’ (IL)] = Re [ic’ (u)m] 

5’ (20) = - i 1 1;’ 1 on AD (2.12) 

conditions (2.7) to (2.11) to the 

onCB(-cc<u<O,v=O) 

-r- 7--- 
Re IV (4 5’ (4 5 (4 - 6 (4 5’ (4 V’ (41 -b ‘W’ (4 V (4 = 0 

Re [iv’ (u)] = sin a 1 5’ (u) 1, Re [et”5 (u)] = sin a on BA (0 < u Q uA, 

Re [iv’ (u)] = 0, Re 5 (u) = 0 onAD (~~<u<+oo,v=O) 

(2.13) 

(2.14) 
v = 0) 

(2.15) 

The initial problem has been reduced to the problem of determining 
two functions V(w) and c(w). which are analytic in the upper half-plane, 

in accordance with the boundary conditions (2.13) to (2.15) given on 

the real axis u of the w-plane, to a nonlinear boundary value problem of 

the Poincare type for the upper half-plane. 

Eliminating one of the unknown functions from conditions (2.13) to 

(2.15). we shall reduce the problem under consideration to a boundary 

value problem for a single function. 

3. From conditions (2.13) to (2.15) it is obvious that the real part 

of the function iv’(w) is expressed by the function j(w) on the entire 

real axis (the first condition on each section of the u-axis) 
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Re [iv’ (w)]~__= Re (ic’t) f--<=<O) 

Re [iv’ (w) I,=, = sin a f p' (u) (0 G u < WA) 

Re [iv' (w)]~=~ = 0 (U~~-(<<~) 
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(3.1) 

Using these conditions, we shall express the complex potential in 

terms of the mapping function g(w) with the help of the Schwartz inte- 

gral for the upper half-plane 

+CXJ 

V’ (W) = - ; \ P (4 & (3.2) 
-C%l 

Here i-~(u) is a real, piece-wise continuous function which has dis- 

continuities of the first kind at the points u = 0 and u = uA 

{ 

Re (ii’!) (-- 30 < m G 0) 
P (4 = sin a 15’ (u) 1 (0 < u G UA) 

0 (uAdu<+oo) 

The Schwartz integral determines the function iv’(w) to within an 

imaginary additive. But the integral in expression (3.2) and the func- 

tion V’(W) vanish at infinity, by virtue of which the constant must be 

zero. Integrating (3.2) with respect to w (this is possible as long as 

the point tv is found in the upper half-plane), we obtain 

v (20) = ; \ in (u - w) p (u) du + c (3.3) 
-cd 

Here c is a complex constant. Formula (3.3) expresses the complex 

potential V(W) in the w-plane in terms of the mapping function C(W). In 

addition, if V(s) and g(s) are related by expression (3.3). the first 

conditions of (2.13) to (2.15) are then fulfilled. Let us now eliminate 

the function V(u) from the second conditions of (2.13) to (2.15), making 

use of expressions (3.2) and (3.3) for this purpose. 

Let us find the limiting values of the functions V(W) and V'(UJ) as 

1-u o (u. is a point on the real axis u). The value of V(u,) at the 

point ue of the real axis u is obtained by the direct substitution of 

u. for w in formula (3.3) so that 

+CU 

4 P (4 du -b c (3.4) 

For the limiting value of the function V’(w) as w - a0 from the upper 

half-plane we have, according to the formula of Sokhotskii LQl 
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(3.5) 

The integral in expression (3.5) is understood in the sense of the 

Cauchy principal value. Substituting the limiting values of the func- 

tions V and V’ according to formulas (3.4) and (3.5) into the second 

condition of (2.13), we obtain after some re-arranging 

Here c1 is a real constant (cl = ?rml Re c). 

Besides condition (3.6) we have for the function <(w} on the positive 

part of the real axis u the second conditions of (2.14) and (2.15) 

(3.7) 

Re [e’*c (uo)] = sin a (0 Q JJO < u*), Re f (uo) = 0 bAduo<+4 

Condition (3.6) is a transformed expression of the Lagrange integral. 

and it is satisfied on the negative portion (- m < ue < 0) of the real 

axis u, which corresponds to the unknown free boundary of the fluid in 

the i-plane. Conditions (3.7) represent geometric conditions for the 

mapping function c(w). 

Thus, the problem of a domain with an unknown portion of boundary has 

been reduced to a boundary value problem of determining a function c(w), 

analytic in the upper half-plane, in accordance with the nonlinear con- 

ditions (3.6) and (3.7) which are given on a known boundary, on the 

entire real axis. 

4. Let us consider the problem of the propagation of a continuous 

pressure along the free surface of an incompressible fluid. 

Let some continuous pressure begin to be propagated along a free sur- 

face at the moment t = 0 from a point 0 of the surface. 

Let us locate the origin of the Cartesian coordinates x, Y at the 

point 0 with the r-axis directed horizontally along the undisturbed 

free surface and the Y-axis directed vertically upward. In order that 

the problem be self-modelling, we shall consider that the function 

P(X, Y> t) which gives the pressure distribution on the free surface is 

a function only of the ratios ~/vet, y/v0 t (v. = const). The surface of 
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the fluid is deformed under the action of the applied pressure, its 

form is not known and must be determined in the process of solution, 

The fluid motion under consideration is a potential one. The problem 

of determining the disturbed fluid pressure is reduced to finding a 

velocity potential cp(z, y, t), a function which is harmonic with respect 

to the variables X, y in the domain occupied by the fluid and which 

satisfies the following conditions: 

the condition on the unknown deformed surface of the fluid 

the condition 

and an initial condition 

‘p (r, Y1 0) = 0 

It is understood that p denotes throughout the excess pressure above 
the initial constant pressure. 

Qn the free surface there is, along with condition (4. I), the condi- 

tion of impenetrability of the fluid surface 

acp ?o a9 wo -----0 
&- a2 az at - (4.21 

Here y = f,(x, t) is the equation of the unknown boundary of the 

fluid. 

5. In self-modelling variables the function p(x, y, tf will have the 

form 

on the surface of the fluid. 

Let us introduce the complex potential V(g) = (D(<. q) + i’!‘(c, q) 

(5 = 5 + in) and consider the plane of the auxiliary variable W. bet 

the function 5 = <(w) conformally map the upper half-plane of w onto 

the domain of the fluid motion in the j-plane so that the point j = m 

transforms into the point w = m. 

From condition (4.2), in the same way as in the previous problem, 

let us express the functions V’(w) and V(W) in terms of the mapping 

function 
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+CO 

V’ (w) = - ; \ Re (ict) & 
--co 

(5.1) 

+a, 

V (wf = i \ Re (ic’c) In (u--w)du+ c 
--co 

(5.2) 

Here c is a complex constant. 

After finding the limiting values of the functions V(w) and V’(w) on 

the real axis and eliminating them from condition (4.1) (transformed 

beforehand, as in the problem of the wedge), we obtain 

(5.3) 

Here cl is a real constant. 

The initial problem has been reduced to a boundary value problem for 

a function C(W) which is analytic in the upper half-plane Im w > 0 and 

which satisfies condition (5.3) on the entire real axis. 

6. After giving the form of the free surface in the g-plane and 

selecting an analytic function S(W) which maps the upper half-plane of 

w onto the domain of the c-plane bounded by the given curve, it is 

possible to obtain from equation (5.3) the pressure generated by the 

given deformation of the surface, i.e. to obtain a particular solution 

of the problem by an inverse method; in addition, the following circum- 

stance should be noted. 

There enters into expression (5.3) an integral of the Cauchy type 

and also an integral with a logarithmic kernel and the same density. 

The function represented by the integral of the Cauchy type vanishes at 

an infinitely removed point, the coefficient of w -’ in the expansion of 

this function in the neighborhood of an infinitely removed point being 

equal UP to a constant multiplier to the integral 

ax = 
s 

Re (i<‘@ du 

-!w 

If al ‘y 0, the existence of the integral with the logarithmic kernel 

leads to the condition that the pressure obtained from equation (5.3) 

will have a logarithmic singularity at infinity, i.e. it will be 



Nonlinear fornulation of SORC self-atodelling problems 1385 

infinitely large, generating however a finite displacement of the 
particles of the free surface. In order to avoid this singularity, the 
function 5(~} must satisfy the condition 

+CO 

1 
Re (ip’.$j du = 0 (6.1) 

Equation (6.1) represents the condition that the positive and nega- 
tive areas bounded by the curve of the free surface and the real axis 
are equal. In other words, (6.1) is the consequence of the condition of 
incompressibility of the fluid. 

7. Let the surface of the fluid be represented in the c-plane by the 
curve S, shown in Fig. 4, 

Let us find the pressure whose propagation along the free surface 
generates a prescribed deformation of the surface of the fluid. The 
function G(W) which conformalls maps the upper half-plane of o onto the 
region bounded by the given curve S in the g-plane has the form 

Fig. 4, 

s (4 = - w + fy, fa$)” 4 w q i& (7.1) 

Here a, p. y, S are real constants, 
where p > 0, 8 > 0. These parameters 
must be selected so that the function 
i(s) satisfies condition (6.1) and 
also the condition of one-sheeted- 
ness 1 c’(w) f 01 everywhere in the 
upper half-plane 

i ’ 
2&t r 

+ (w + @ia + (W + is)% 1 =k O for Imw >0 

Calculating the integral (6.1) with the help of the theory of 
residues, we obtain from (6.1) the equation 

3aa 4w Ya 
8$j+@+~)sf~- “I= 0 (7.3) 

which a, p, y and F must satisfy. The parametric equation of the curve 
S is 

The pressure generated by the prescribed deformation of the surface 
is determined from equation (5.3) 
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The real constant cl is found from the condition 

p=o for /U/WOO (7.6, 

and the singular integral with the Cauchy kernel and the integral with 
the logarithmic kernel are computed with the help of the theory of 
residues and have the form 

+a3 

1 _c, Re (il;‘@ da1 
-g- - = 2a I t+- u C 3a 27 8qjz+ (B 1 C 1 

23 T 
-@-qjY--46” &j-8- 1 

26 4afh (f.P--u2)+2a2u 
(29 + p)* + 

+ 2ayu [p (US - 62) - 6 (u2 - B”) J _ 2ay6u (us - 3be) -t- 2apru ~3% - 3~) 
(I2 + 82)x (US + b”)” (u2 + tWs (oa + a2) 
+cd 

I 
x s Re(i~‘~Infu,--lta,=cz 

-m 

The following combination of parameters, for example, satisfies equa- 

tion (7.3) : 

a = 3.2003, B = 2, 7 = 0.25, 6-11 5 (7.7) 

Moreover, the inequality (7.2) is also fulfilled because the modulus 

of the function representing the sum of 

the second and third terms in the ex- 

pression (7.2) cannot be greater than 

0.801 everywhere in the upper half-plane 

Im m > 0 for the prescribed parameters 

a, F, y and F. 

For the prescribed parameters a, p, Fig. 5. 
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y and 6 we obtain from condition (7.6) that cl = - 0.00829. The curve 

of the pressure in dimensionless form has been computed for the para- 

meters of (7.7) according to formula (7.5) and is presented in Fig. 5. 

Thus, if the pressure represented by the curve shown in Fig. 5 is 

applied to the free surface of a fluid, an exact solution to the problem 

of the generation of the fluid motion is given by formulas (5.2), (7.1) 

and (7.4). 

Formulas (5.2) and (7.1) determine the complex velocity potential in 

the entire domain of the fluid motion (in the w-plane), and formulas 

(7.4) give the parametric equation of the curve of the deformed surface 

of the fluid in the c-plane (Fig. 4). The function j(w) given by formula 

(7.1) maps the upper half-plane Im w > 0 onto a domain near the domain 

occupied by the fluid during the entry of a wedge into it, This circum- 

stance gives the possibility of using the obtained function (7.1) as the 

zeroth approximation for finding a solution to the nonlinear integro- 

differential equation in the case of the problem of the penetration of 

a wedge. 
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